3.2.78 \(\int \frac {(a+i a \tan (c+d x))^{5/2} (\frac {3 b B}{2 a}+B \tan (c+d x))}{\tan ^{\frac {5}{2}}(c+d x)} \, dx\) [178]

3.2.78.1 Optimal result
3.2.78.2 Mathematica [B] (verified)
3.2.78.3 Rubi [A] (verified)
3.2.78.4 Maple [B] (verified)
3.2.78.5 Fricas [B] (verification not implemented)
3.2.78.6 Sympy [F]
3.2.78.7 Maxima [F]
3.2.78.8 Giac [F(-2)]
3.2.78.9 Mupad [F(-1)]

3.2.78.1 Optimal result

Integrand size = 46, antiderivative size = 190 \[ \int \frac {(a+i a \tan (c+d x))^{5/2} \left (\frac {3 b B}{2 a}+B \tan (c+d x)\right )}{\tan ^{\frac {5}{2}}(c+d x)} \, dx=\frac {2 (-1)^{3/4} a^{5/2} B \arctan \left (\frac {(-1)^{3/4} \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}+\frac {(2+2 i) a^{3/2} (2 a+3 i b) B \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-\frac {2 a (a+3 i b) B \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}-\frac {b B (a+i a \tan (c+d x))^{3/2}}{d \tan ^{\frac {3}{2}}(c+d x)} \]

output
2*(-1)^(3/4)*a^(5/2)*B*arctan((-1)^(3/4)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*t 
an(d*x+c))^(1/2))/d+(2+2*I)*a^(3/2)*(2*a+3*I*b)*B*arctanh((1+I)*a^(1/2)*ta 
n(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2))/d-2*a*(a+3*I*b)*B*(a+I*a*tan(d*x+ 
c))^(1/2)/d/tan(d*x+c)^(1/2)-b*B*(a+I*a*tan(d*x+c))^(3/2)/d/tan(d*x+c)^(3/ 
2)
 
3.2.78.2 Mathematica [B] (verified)

Both result and optimal contain complex but leaf count is larger than twice the leaf count of optimal. \(566\) vs. \(2(190)=380\).

Time = 11.38 (sec) , antiderivative size = 566, normalized size of antiderivative = 2.98 \[ \int \frac {(a+i a \tan (c+d x))^{5/2} \left (\frac {3 b B}{2 a}+B \tan (c+d x)\right )}{\tan ^{\frac {5}{2}}(c+d x)} \, dx=-\frac {b B (a+i a \tan (c+d x))^{5/2}}{a d \tan ^{\frac {3}{2}}(c+d x)}+\frac {2 \left (-\frac {3 (2 a+5 i b) B (a+i a \tan (c+d x))^{5/2}}{2 d \sqrt {\tan (c+d x)}}+\frac {2 \left (\frac {3 i a^3 (2 a+5 i b) B \sqrt {a+i a \tan (c+d x)} \left (-\frac {3}{4} (-1)^{3/4} \text {arcsinh}\left (\sqrt [4]{-1} \sqrt {\tan (c+d x)}\right )+\frac {5}{4} \sqrt {1+i \tan (c+d x)} \sqrt {\tan (c+d x)}+\frac {1}{2} i \sqrt {1+i \tan (c+d x)} \tan ^{\frac {3}{2}}(c+d x)\right )}{2 d \sqrt {1+i \tan (c+d x)}}+\frac {a \left (\frac {3}{8} i a^2 (10 i a-23 b) B+\frac {3}{2} a^2 (2 a+5 i b) B\right ) \left (-\frac {4 i \sqrt {2} a \text {arctanh}\left (\frac {\sqrt {2} \sqrt {i a \tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) \sqrt {\tan (c+d x)}}{\sqrt {i a \tan (c+d x)}}+\frac {4 i a^{3/2} \text {arcsinh}\left (\frac {\sqrt {i a \tan (c+d x)}}{\sqrt {a}}\right ) \sqrt {1+i \tan (c+d x)} \sqrt {\tan (c+d x)}}{\sqrt {i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}+i \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}+\frac {i \sqrt {a} \text {arcsinh}\left (\frac {\sqrt {i a \tan (c+d x)}}{\sqrt {a}}\right ) \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{\sqrt {1+i \tan (c+d x)} \sqrt {i a \tan (c+d x)}}\right )}{d}\right )}{a}\right )}{3 a} \]

input
Integrate[((a + I*a*Tan[c + d*x])^(5/2)*((3*b*B)/(2*a) + B*Tan[c + d*x]))/ 
Tan[c + d*x]^(5/2),x]
 
output
-((b*B*(a + I*a*Tan[c + d*x])^(5/2))/(a*d*Tan[c + d*x]^(3/2))) + (2*((-3*( 
2*a + (5*I)*b)*B*(a + I*a*Tan[c + d*x])^(5/2))/(2*d*Sqrt[Tan[c + d*x]]) + 
(2*((((3*I)/2)*a^3*(2*a + (5*I)*b)*B*Sqrt[a + I*a*Tan[c + d*x]]*((-3*(-1)^ 
(3/4)*ArcSinh[(-1)^(1/4)*Sqrt[Tan[c + d*x]]])/4 + (5*Sqrt[1 + I*Tan[c + d* 
x]]*Sqrt[Tan[c + d*x]])/4 + (I/2)*Sqrt[1 + I*Tan[c + d*x]]*Tan[c + d*x]^(3 
/2)))/(d*Sqrt[1 + I*Tan[c + d*x]]) + (a*(((3*I)/8)*a^2*((10*I)*a - 23*b)*B 
 + (3*a^2*(2*a + (5*I)*b)*B)/2)*(((-4*I)*Sqrt[2]*a*ArcTanh[(Sqrt[2]*Sqrt[I 
*a*Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]]*Sqrt[Tan[c + d*x]])/Sqrt[I*a 
*Tan[c + d*x]] + ((4*I)*a^(3/2)*ArcSinh[Sqrt[I*a*Tan[c + d*x]]/Sqrt[a]]*Sq 
rt[1 + I*Tan[c + d*x]]*Sqrt[Tan[c + d*x]])/(Sqrt[I*a*Tan[c + d*x]]*Sqrt[a 
+ I*a*Tan[c + d*x]]) + I*Sqrt[Tan[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]] + ( 
I*Sqrt[a]*ArcSinh[Sqrt[I*a*Tan[c + d*x]]/Sqrt[a]]*Sqrt[Tan[c + d*x]]*Sqrt[ 
a + I*a*Tan[c + d*x]])/(Sqrt[1 + I*Tan[c + d*x]]*Sqrt[I*a*Tan[c + d*x]]))) 
/d))/a))/(3*a)
 
3.2.78.3 Rubi [A] (verified)

Time = 1.24 (sec) , antiderivative size = 190, normalized size of antiderivative = 1.00, number of steps used = 15, number of rules used = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.304, Rules used = {3042, 4076, 27, 3042, 4076, 27, 3042, 4084, 3042, 4027, 218, 4082, 65, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a+i a \tan (c+d x))^{5/2} \left (\frac {3 b B}{2 a}+B \tan (c+d x)\right )}{\tan ^{\frac {5}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(a+i a \tan (c+d x))^{5/2} \left (\frac {3 b B}{2 a}+B \tan (c+d x)\right )}{\tan (c+d x)^{5/2}}dx\)

\(\Big \downarrow \) 4076

\(\displaystyle \frac {2}{3} \int \frac {3 (i \tan (c+d x) a+a)^{3/2} ((a+3 i b) B+i a \tan (c+d x) B)}{2 \tan ^{\frac {3}{2}}(c+d x)}dx-\frac {b B (a+i a \tan (c+d x))^{3/2}}{d \tan ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 27

\(\displaystyle \int \frac {(i \tan (c+d x) a+a)^{3/2} ((a+3 i b) B+i a \tan (c+d x) B)}{\tan ^{\frac {3}{2}}(c+d x)}dx-\frac {b B (a+i a \tan (c+d x))^{3/2}}{d \tan ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(i \tan (c+d x) a+a)^{3/2} ((a+3 i b) B+i a \tan (c+d x) B)}{\tan (c+d x)^{3/2}}dx-\frac {b B (a+i a \tan (c+d x))^{3/2}}{d \tan ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 4076

\(\displaystyle 2 \int \frac {\sqrt {i \tan (c+d x) a+a} \left (3 a (i a-2 b) B-a^2 B \tan (c+d x)\right )}{2 \sqrt {\tan (c+d x)}}dx-\frac {b B (a+i a \tan (c+d x))^{3/2}}{d \tan ^{\frac {3}{2}}(c+d x)}-\frac {2 a B (a+3 i b) \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle \int \frac {\sqrt {i \tan (c+d x) a+a} \left (3 a (i a-2 b) B-a^2 B \tan (c+d x)\right )}{\sqrt {\tan (c+d x)}}dx-\frac {b B (a+i a \tan (c+d x))^{3/2}}{d \tan ^{\frac {3}{2}}(c+d x)}-\frac {2 a B (a+3 i b) \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {i \tan (c+d x) a+a} \left (3 a (i a-2 b) B-a^2 B \tan (c+d x)\right )}{\sqrt {\tan (c+d x)}}dx-\frac {b B (a+i a \tan (c+d x))^{3/2}}{d \tan ^{\frac {3}{2}}(c+d x)}-\frac {2 a B (a+3 i b) \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}\)

\(\Big \downarrow \) 4084

\(\displaystyle 2 a B (-3 b+2 i a) \int \frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx-i a B \int \frac {(a-i a \tan (c+d x)) \sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx-\frac {b B (a+i a \tan (c+d x))^{3/2}}{d \tan ^{\frac {3}{2}}(c+d x)}-\frac {2 a B (a+3 i b) \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle 2 a B (-3 b+2 i a) \int \frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx-i a B \int \frac {(a-i a \tan (c+d x)) \sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx-\frac {b B (a+i a \tan (c+d x))^{3/2}}{d \tan ^{\frac {3}{2}}(c+d x)}-\frac {2 a B (a+3 i b) \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}\)

\(\Big \downarrow \) 4027

\(\displaystyle -\frac {4 i a^3 B (-3 b+2 i a) \int \frac {1}{-\frac {2 \tan (c+d x) a^2}{i \tan (c+d x) a+a}-i a}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {i \tan (c+d x) a+a}}}{d}-i a B \int \frac {(a-i a \tan (c+d x)) \sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx-\frac {b B (a+i a \tan (c+d x))^{3/2}}{d \tan ^{\frac {3}{2}}(c+d x)}-\frac {2 a B (a+3 i b) \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}\)

\(\Big \downarrow \) 218

\(\displaystyle -i a B \int \frac {(a-i a \tan (c+d x)) \sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx+\frac {(2-2 i) a^{3/2} B (-3 b+2 i a) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-\frac {b B (a+i a \tan (c+d x))^{3/2}}{d \tan ^{\frac {3}{2}}(c+d x)}-\frac {2 a B (a+3 i b) \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}\)

\(\Big \downarrow \) 4082

\(\displaystyle -\frac {i a^3 B \int \frac {1}{\sqrt {\tan (c+d x)} \sqrt {i \tan (c+d x) a+a}}d\tan (c+d x)}{d}+\frac {(2-2 i) a^{3/2} B (-3 b+2 i a) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-\frac {b B (a+i a \tan (c+d x))^{3/2}}{d \tan ^{\frac {3}{2}}(c+d x)}-\frac {2 a B (a+3 i b) \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}\)

\(\Big \downarrow \) 65

\(\displaystyle -\frac {2 i a^3 B \int \frac {1}{1-\frac {i a \tan (c+d x)}{i \tan (c+d x) a+a}}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {i \tan (c+d x) a+a}}}{d}+\frac {(2-2 i) a^{3/2} B (-3 b+2 i a) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-\frac {b B (a+i a \tan (c+d x))^{3/2}}{d \tan ^{\frac {3}{2}}(c+d x)}-\frac {2 a B (a+3 i b) \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {2 (-1)^{3/4} a^{5/2} B \arctan \left (\frac {(-1)^{3/4} \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}+\frac {(2-2 i) a^{3/2} B (-3 b+2 i a) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-\frac {b B (a+i a \tan (c+d x))^{3/2}}{d \tan ^{\frac {3}{2}}(c+d x)}-\frac {2 a B (a+3 i b) \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}\)

input
Int[((a + I*a*Tan[c + d*x])^(5/2)*((3*b*B)/(2*a) + B*Tan[c + d*x]))/Tan[c 
+ d*x]^(5/2),x]
 
output
(2*(-1)^(3/4)*a^(5/2)*B*ArcTan[((-1)^(3/4)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqr 
t[a + I*a*Tan[c + d*x]]])/d + ((2 - 2*I)*a^(3/2)*((2*I)*a - 3*b)*B*ArcTanh 
[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/d - (2* 
a*(a + (3*I)*b)*B*Sqrt[a + I*a*Tan[c + d*x]])/(d*Sqrt[Tan[c + d*x]]) - (b* 
B*(a + I*a*Tan[c + d*x])^(3/2))/(d*Tan[c + d*x]^(3/2))
 

3.2.78.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 65
Int[1/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[2   Sub 
st[Int[1/(b - d*x^2), x], x, Sqrt[b*x]/Sqrt[c + d*x]], x] /; FreeQ[{b, c, d 
}, x] &&  !GtQ[c, 0]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4027
Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) 
 + (f_.)*(x_)]], x_Symbol] :> Simp[-2*a*(b/f)   Subst[Int[1/(a*c - b*d - 2* 
a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x] /; 
FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && N 
eQ[c^2 + d^2, 0]
 

rule 4076
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(-a^2)*(B*c - A*d)*(a + b*Tan[e + f*x])^(m - 1)*((c + d*Tan[e + f*x])^(n 
+ 1)/(d*f*(b*c + a*d)*(n + 1))), x] - Simp[a/(d*(b*c + a*d)*(n + 1))   Int[ 
(a + b*Tan[e + f*x])^(m - 1)*(c + d*Tan[e + f*x])^(n + 1)*Simp[A*b*d*(m - n 
 - 2) - B*(b*c*(m - 1) + a*d*(n + 1)) + (a*A*d*(m + n) - B*(a*c*(m - 1) + b 
*d*(n + 1)))*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] 
 && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && GtQ[m, 1] && LtQ[n, -1]
 

rule 4082
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[b*(B/f)   Subst[Int[(a + b*x)^(m - 1)*(c + d*x)^n, x], x, Tan[e + f*x]], 
x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[ 
a^2 + b^2, 0] && EqQ[A*b + a*B, 0]
 

rule 4084
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(A*b + a*B)/b   Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n, x], x] 
 - Simp[B/b   Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(a - b*Tan[ 
e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - 
a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[A*b + a*B, 0]
 
3.2.78.4 Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 617 vs. \(2 (156 ) = 312\).

Time = 0.14 (sec) , antiderivative size = 618, normalized size of antiderivative = 3.25

method result size
derivativedivides \(\frac {a B \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, \left (6 i \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a^{2} \left (\tan ^{2}\left (d x +c \right )\right )-i \sqrt {i a}\, \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \left (\tan ^{2}\left (d x +c \right )\right )+2 i \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a \left (\tan ^{2}\left (d x +c \right )\right )-14 i \sqrt {i a}\, \sqrt {-i a}\, \tan \left (d x +c \right ) \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, b -12 \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a b \left (\tan ^{2}\left (d x +c \right )\right )-\sqrt {i a}\, \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \left (\tan ^{2}\left (d x +c \right )\right )-2 \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a \left (\tan ^{2}\left (d x +c \right )\right )-4 \sqrt {i a}\, \sqrt {-i a}\, a \tan \left (d x +c \right ) \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-2 b \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}\right )}{2 d \tan \left (d x +c \right )^{\frac {3}{2}} \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}}\) \(618\)
default \(\frac {a B \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, \left (6 i \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a^{2} \left (\tan ^{2}\left (d x +c \right )\right )-i \sqrt {i a}\, \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \left (\tan ^{2}\left (d x +c \right )\right )+2 i \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a \left (\tan ^{2}\left (d x +c \right )\right )-14 i \sqrt {i a}\, \sqrt {-i a}\, \tan \left (d x +c \right ) \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, b -12 \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a b \left (\tan ^{2}\left (d x +c \right )\right )-\sqrt {i a}\, \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \left (\tan ^{2}\left (d x +c \right )\right )-2 \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a \left (\tan ^{2}\left (d x +c \right )\right )-4 \sqrt {i a}\, \sqrt {-i a}\, a \tan \left (d x +c \right ) \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-2 b \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}\right )}{2 d \tan \left (d x +c \right )^{\frac {3}{2}} \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}}\) \(618\)
parts \(\frac {B \left (-i \sqrt {i a}\, \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )-i \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a \tan \left (d x +c \right )-\sqrt {i a}\, \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \tan \left (d x +c \right ) a -4 \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a \tan \left (d x +c \right )-2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}\right ) \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, a^{2}}{d \sqrt {\tan \left (d x +c \right )}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}}-\frac {b B a \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, \left (3 i \sqrt {i a}\, \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \left (\tan ^{2}\left (d x +c \right )\right )+12 i \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a \left (\tan ^{2}\left (d x +c \right )\right )-3 \sqrt {i a}\, \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \left (\tan ^{2}\left (d x +c \right )\right )+14 i \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}\, \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}\right )}{2 d \tan \left (d x +c \right )^{\frac {3}{2}} \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}}\) \(757\)

input
int((a+I*a*tan(d*x+c))^(5/2)*(3/2*b*B/a+B*tan(d*x+c))/tan(d*x+c)^(5/2),x,m 
ethod=_RETURNVERBOSE)
 
output
1/2/d*a*B*(a*(1+I*tan(d*x+c)))^(1/2)*(6*I*ln(1/2*(2*I*a*tan(d*x+c)+2*(a*ta 
n(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)+a)/(I*a)^(1/2))*(-I*a)^(1/2)* 
a^2*tan(d*x+c)^2-I*(I*a)^(1/2)*2^(1/2)*ln((2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d 
*x+c)*(1+I*tan(d*x+c)))^(1/2)-I*a+3*a*tan(d*x+c))/(tan(d*x+c)+I))*a*tan(d* 
x+c)^2+2*I*ln(1/2*(2*I*a*tan(d*x+c)+2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2 
)*(I*a)^(1/2)+a)/(I*a)^(1/2))*(-I*a)^(1/2)*a*tan(d*x+c)^2-14*I*(I*a)^(1/2) 
*(-I*a)^(1/2)*tan(d*x+c)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*b-12*ln(1/2 
*(2*I*a*tan(d*x+c)+2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)+a)/ 
(I*a)^(1/2))*(-I*a)^(1/2)*a*b*tan(d*x+c)^2-(I*a)^(1/2)*2^(1/2)*ln((2*2^(1/ 
2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)-I*a+3*a*tan(d*x+c))/ 
(tan(d*x+c)+I))*a*tan(d*x+c)^2-2*ln(1/2*(2*I*a*tan(d*x+c)+2*(a*tan(d*x+c)* 
(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)+a)/(I*a)^(1/2))*(-I*a)^(1/2)*a*tan(d*x 
+c)^2-4*(I*a)^(1/2)*(-I*a)^(1/2)*a*tan(d*x+c)*(a*tan(d*x+c)*(1+I*tan(d*x+c 
)))^(1/2)-2*b*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)*(-I*a)^(1/ 
2))/tan(d*x+c)^(3/2)/(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)/(I*a)^(1/2)/(-I 
*a)^(1/2)
 
3.2.78.5 Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 900 vs. \(2 (146) = 292\).

Time = 0.28 (sec) , antiderivative size = 900, normalized size of antiderivative = 4.74 \[ \int \frac {(a+i a \tan (c+d x))^{5/2} \left (\frac {3 b B}{2 a}+B \tan (c+d x)\right )}{\tan ^{\frac {5}{2}}(c+d x)} \, dx=\text {Too large to display} \]

input
integrate((a+I*a*tan(d*x+c))^(5/2)*(3/2*b*B/a+B*tan(d*x+c))/tan(d*x+c)^(5/ 
2),x, algorithm="fricas")
 
output
1/2*(2*sqrt(2)*(d*e^(4*I*d*x + 4*I*c) - 2*d*e^(2*I*d*x + 2*I*c) + d)*sqrt( 
-(-4*I*B^2*a^5 + 12*B^2*a^4*b + 9*I*B^2*a^3*b^2)/d^2)*log((sqrt(2)*d*sqrt( 
-(-4*I*B^2*a^5 + 12*B^2*a^4*b + 9*I*B^2*a^3*b^2)/d^2)*e^(I*d*x + I*c) + sq 
rt(2)*(2*I*B*a^2 - 3*B*a*b + (2*I*B*a^2 - 3*B*a*b)*e^(2*I*d*x + 2*I*c))*sq 
rt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I* 
d*x + 2*I*c) + 1)))*e^(-I*d*x - I*c)/(2*I*B*a^2 - 3*B*a*b)) - 2*sqrt(2)*(d 
*e^(4*I*d*x + 4*I*c) - 2*d*e^(2*I*d*x + 2*I*c) + d)*sqrt(-(-4*I*B^2*a^5 + 
12*B^2*a^4*b + 9*I*B^2*a^3*b^2)/d^2)*log(-(sqrt(2)*d*sqrt(-(-4*I*B^2*a^5 + 
 12*B^2*a^4*b + 9*I*B^2*a^3*b^2)/d^2)*e^(I*d*x + I*c) - sqrt(2)*(2*I*B*a^2 
 - 3*B*a*b + (2*I*B*a^2 - 3*B*a*b)*e^(2*I*d*x + 2*I*c))*sqrt(a/(e^(2*I*d*x 
 + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1 
)))*e^(-I*d*x - I*c)/(2*I*B*a^2 - 3*B*a*b)) + 4*sqrt(2)*(B*a*b*e^(3*I*d*x 
+ 3*I*c) - (I*B*a^2 - 4*B*a*b)*e^(5*I*d*x + 5*I*c) - (-I*B*a^2 + 3*B*a*b)* 
e^(I*d*x + I*c))*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2 
*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)) + sqrt(4*I*B^2*a^5/d^2)*(d*e^(4*I*d* 
x + 4*I*c) - 2*d*e^(2*I*d*x + 2*I*c) + d)*log((sqrt(2)*(B*a^2*e^(2*I*d*x + 
 2*I*c) + B*a^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2 
*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)) + I*sqrt(4*I*B^2*a^5/d^2)*d*e^(I*d*x 
 + I*c))*e^(-I*d*x - I*c)/(B*a^2)) - sqrt(4*I*B^2*a^5/d^2)*(d*e^(4*I*d*x + 
 4*I*c) - 2*d*e^(2*I*d*x + 2*I*c) + d)*log((sqrt(2)*(B*a^2*e^(2*I*d*x +...
 
3.2.78.6 Sympy [F]

\[ \int \frac {(a+i a \tan (c+d x))^{5/2} \left (\frac {3 b B}{2 a}+B \tan (c+d x)\right )}{\tan ^{\frac {5}{2}}(c+d x)} \, dx=\frac {B \left (\int \frac {2 a^{3} \sqrt {i a \tan {\left (c + d x \right )} + a}}{\tan ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx + \int \left (- 2 a^{3} \sqrt {i a \tan {\left (c + d x \right )} + a} \sqrt {\tan {\left (c + d x \right )}}\right )\, dx + \int \frac {4 i a^{3} \sqrt {i a \tan {\left (c + d x \right )} + a}}{\sqrt {\tan {\left (c + d x \right )}}}\, dx + \int \frac {3 a^{2} b \sqrt {i a \tan {\left (c + d x \right )} + a}}{\tan ^{\frac {5}{2}}{\left (c + d x \right )}}\, dx + \int \left (- \frac {3 a^{2} b \sqrt {i a \tan {\left (c + d x \right )} + a}}{\sqrt {\tan {\left (c + d x \right )}}}\right )\, dx + \int \frac {6 i a^{2} b \sqrt {i a \tan {\left (c + d x \right )} + a}}{\tan ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx\right )}{2 a} \]

input
integrate((a+I*a*tan(d*x+c))**(5/2)*(3/2*b*B/a+B*tan(d*x+c))/tan(d*x+c)**( 
5/2),x)
 
output
B*(Integral(2*a**3*sqrt(I*a*tan(c + d*x) + a)/tan(c + d*x)**(3/2), x) + In 
tegral(-2*a**3*sqrt(I*a*tan(c + d*x) + a)*sqrt(tan(c + d*x)), x) + Integra 
l(4*I*a**3*sqrt(I*a*tan(c + d*x) + a)/sqrt(tan(c + d*x)), x) + Integral(3* 
a**2*b*sqrt(I*a*tan(c + d*x) + a)/tan(c + d*x)**(5/2), x) + Integral(-3*a* 
*2*b*sqrt(I*a*tan(c + d*x) + a)/sqrt(tan(c + d*x)), x) + Integral(6*I*a**2 
*b*sqrt(I*a*tan(c + d*x) + a)/tan(c + d*x)**(3/2), x))/(2*a)
 
3.2.78.7 Maxima [F]

\[ \int \frac {(a+i a \tan (c+d x))^{5/2} \left (\frac {3 b B}{2 a}+B \tan (c+d x)\right )}{\tan ^{\frac {5}{2}}(c+d x)} \, dx=\int { \frac {{\left (2 \, B \tan \left (d x + c\right ) + \frac {3 \, B b}{a}\right )} {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {5}{2}}}{2 \, \tan \left (d x + c\right )^{\frac {5}{2}}} \,d x } \]

input
integrate((a+I*a*tan(d*x+c))^(5/2)*(3/2*b*B/a+B*tan(d*x+c))/tan(d*x+c)^(5/ 
2),x, algorithm="maxima")
 
output
1/2*integrate((2*B*tan(d*x + c) + 3*B*b/a)*(I*a*tan(d*x + c) + a)^(5/2)/ta 
n(d*x + c)^(5/2), x)
 
3.2.78.8 Giac [F(-2)]

Exception generated. \[ \int \frac {(a+i a \tan (c+d x))^{5/2} \left (\frac {3 b B}{2 a}+B \tan (c+d x)\right )}{\tan ^{\frac {5}{2}}(c+d x)} \, dx=\text {Exception raised: TypeError} \]

input
integrate((a+I*a*tan(d*x+c))^(5/2)*(3/2*b*B/a+B*tan(d*x+c))/tan(d*x+c)^(5/ 
2),x, algorithm="giac")
 
output
Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:Non regular value [0] was discarded 
 and replaced randomly by 0=[-52]Warning, replacing -52 by -83, a substitu 
tion vari
 
3.2.78.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(a+i a \tan (c+d x))^{5/2} \left (\frac {3 b B}{2 a}+B \tan (c+d x)\right )}{\tan ^{\frac {5}{2}}(c+d x)} \, dx=\int \frac {\left (B\,\mathrm {tan}\left (c+d\,x\right )+\frac {3\,B\,b}{2\,a}\right )\,{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{5/2}}{{\mathrm {tan}\left (c+d\,x\right )}^{5/2}} \,d x \]

input
int(((B*tan(c + d*x) + (3*B*b)/(2*a))*(a + a*tan(c + d*x)*1i)^(5/2))/tan(c 
 + d*x)^(5/2),x)
 
output
int(((B*tan(c + d*x) + (3*B*b)/(2*a))*(a + a*tan(c + d*x)*1i)^(5/2))/tan(c 
 + d*x)^(5/2), x)